您的位置:首页 >动态 > 综合精选 >

求定义域需要注意的方面(求定义域)

导读 大家好,小问来为大家解答以上问题。求定义域需要注意的方面,求定义域这个很多人还不知道,现在让我们一起来看看吧!1、给出函数解析式求其...

大家好,小问来为大家解答以上问题。求定义域需要注意的方面,求定义域这个很多人还不知道,现在让我们一起来看看吧!

1、给出函数解析式求其定义域,一般是先列出限制条件的不等式(组),再进行求解。

2、 二. 给出函数的定义域,求函数的定义域,其解法步骤是:若已知函数的定义域为,则其复合函数的定义域应由不等式解得。

3、 三. 给出的定义域,求的定义域,其解法步骤是:若已知的定义域为,则的定义域是在时的取值范围。

4、 求函数定义域函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示; 常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题; 如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等; 对复合函数y=f〔g(x)〕的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域; 分段函数的定义域是各个区间的并集; 含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明; 求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;例如:编辑本段简介 f(x)是函数的符号,它代表函数图象上每一个点的纵坐标的数值,因此函数图像上所有点的纵坐标构成一个集合,这个集合就是函数的值域。

5、x是自变量,它代表着函数图象上每一点的横坐标,所有横坐标的数值 构成的集合就是函数的定义域。

6、f是对应法则的代表,它可以由f(x)的解析式决定。

7、例如:f(x)=x^2+1,f代表的是把自变量x先平方再加1。

8、x2+1的取值范围(x2+1≥1)就是f(x)=x2+1的值域。

9、如果说你弄清了上述问题,仅仅是对函数f(x)有了一个初步的认识,我们还需要对f(x)有更深刻的了解。

10、编辑本段认识f(x) 我们可以从以下几个方面来认识f(x)。

11、 第一:对代数式的认识。

12、每一个代数式它的本质就是一个函数。

13、象x2-1这个代数式,它就是一个函数,其自变量是x,对x的每一个值x2-1都有唯一的值与之对应,所以x2-1的所有值的集合就是这个函数的值域。

14、 第二:对抽象数的认识,对于一个没有具体解析式的抽象函数,由于我们不知道它的具体对应法则也难以知道它的自变、定义域、值域,很难理解它的符号及其意义。

15、 例如:f(x+1)的自变量是什么呢?它的对应法则还是f吗?f(x+1)的自变量是x,它的对应法则不是f。

16、 我们不妨作如下假设,如果f(x)=x2+1,那么f(x+1)=(x+1)2+1,f(x+1)与(x+1)2+1这个代数式相等,即:(x+1)2+1的自变量就是f(x+1)的自变量。

17、(x+1)2+1的对应法则是先把自变量加1再平方,然后再加上1。

18、 再如,f(x)与f(t)是同一个函数吗? 只须列举一个特殊函数说明。

19、 显然,f(x)与f(t)它们的对应法则是相同的,如果x的取值范围与 t的取值范围是相同的,则f(x)与f(t)就是相同的函数,否则,它们就是对应法则相同而定义域不同的函数了。

20、 例:设 f(x+1)=x2+1 ,求f(x) 设x+1=t=>t2—2=x2+2x 所以f(t)=t2—2, f(x)=x2—2 而f(x)与f(t)必须x与t的取值范围相同,才是相同的函数,由t=x+ 可知t≥2或t≤—2 所以f(x)=x2—2,(x≥2或x≤2)编辑本段对函数f(x)定义域的认识 如果一个函数是具体的,它的定义域我们不难理解。

21、但如果一个函数是抽象的,它的定义域就难以捉摸。

22、 例如:y=f(x) 1≤x≤2与y=f(x+1)的定义域相同吗?值域相同吗?如果已知f(x)的定义域是x∈ [1,2],f(x+1)的定义域是什么? 因为f(x)的定义域是 x ∈ [1,2],即是说对1≤x≤2中的每一个数值f(x)都有函数值,超出这个范围内的任何一个数值f(x)都没有函数值。

23、例如3就没有函数值,即f(3)就无意义。

24、因此,当x+1的取值超出了[1,2]这个范围,f(x+1)也就没有了函数值,所以f(x+1)的定义域是1≤x+1≤2这个不等式的解集,也就是说f(x+1)中x+1的值域是f(x)的定义域,又由于1≤x+1≤2故f(x+1)的值域与f(x)(1≤x≤2)的值域也就自然相同了。

25、 看是不是同一个函数,因为都是f(),所以是同一个 (是不是统一函数只要看()前面的字母是不是同一个,注意大小写也要一样才是同一函数) 题目中的“已知函数f(x)”中的x是一个抽象的概念, x可以代替f()括号中任意表达式, 如果他的定义域是(a,b) 那么,x+m和x-m的定义域都是(a,b) 就高中课程而言,函数定义域是说函数f(x)中,x的取值范围。

26、 求函数的定义域: 求函数的定义域: y=1/x 分母不等于0; y=sprx 根号内大于等于0; y=logaX 对数底数大于0且不等于1,真数大于0;。

以上就是【求定义域需要注意的方面,求定义域】相关内容。

免责声明:本文由用户上传,如有侵权请联系删除!